Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest
نویسندگان
چکیده
منابع مشابه
Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest
Forest environment classification in mountain regions based on single-sensor remote sensing approaches is hindered by forest complexity and topographic effects. Temperate broadleaf forests in western Asia such as the Hyrcanian forest in northern Iran have already suffered from intense anthropogenic activities. In those regions, forests mainly extend in rough terrain and comprise different stand...
متن کاملon the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولAnalyzing the performance of different machine learning methods in determining the transportation mode using trajectory data
With the widespread advent of the smart phones equipping with Global Positioning System (GPS), a huge volume of users’ trajectory data was generated. To facilitate urban management and present appropriate services to users, studying these data was raised as a widespread research filed and has been developing since then. In this research, the transportation mode of users’ trajectories was identi...
متن کاملComparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data
Runoff forecasting in mountainous regions with processed based models is often difficult and inaccurate due to the complexity of the rainfall-runoff relationships and difficulties involved in obtaining the required data. Machine learning models offer an alternative for runoff forecasting in these regions. This paper explores and compares two machine learning methods, support vector regression (...
متن کاملComparison of classic regression methods with neural network and support vector machine in classifying groundwater resources
In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2014
ISSN: 2072-4292
DOI: 10.3390/rs6053624